Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta cir. bras ; 38: e384623, 2023. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1519871

ABSTRACT

Purpose: To investigate the Shikonin (SHI) induce autophagy of hypertrophic scar-derived fibroblasts (HSFs) and the mechanism of which in repairing hypertrophic scar. Methods: This study showed that SHI induced autophagy from HSFs and repaired skin scars through the AMPK/mTOR pathway. Alamar Blue and Sirius red were used to identify cell activity and collagen. Electron microscopy, label-free quantitative proteomic analysis, fluorescence and other methods were used to identify autophagy. The differences in the expression of autophagy and AMPK/mTOR pathway-related proteins after SHI treatment were quantitatively analyzed by Western blots. A quantitative real-time polymerase chain reaction assay was used to detect the expression of LC3, AMPK and ULK after adding chloroquine (CQ) autophagy inhibitor. Results: After treatment with SHI for 24 hours, it was found that the viability of HSFs was significantly reduced, the protein expression of LC3-II/LC3-I and Beclin1 increased, while the protein expression of P62 decreased. The expression of phosphorylated AMPK increased and expression of phosphorylated mTOR decreased. After the use of CQ, the cell autophagy caused by SHI was blocked. The key genes LC3 and P62 were then reexamined by immunohistochemistry using a porcine full-thickness burn hypertrophic scar model, and the results verified that SHI could induce autophagy in vivo. Conclusions: These findings suggested that SHI promoted autophagy of HSFs cells, and the potential mechanism may be related to the AMPK/mTOR signal pathway, which provided new insights for the treatment of hypertrophic scars.


Subject(s)
Autophagy , Cicatrix, Hypertrophic , Fibroblasts
2.
Acta cir. bras ; 37(9): e370902, 2022. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1402980

ABSTRACT

Purpose: To investigate the active ingredients of walnut ointment (WO) and its mechanism in repairing wounds. Methods: The ingredients of WO were detected by gas chromatography­mass spectrometry. The effect of linoleic acid (LA) was tested by in vitro Alamar Blue (AB) reagent. Image J software, histological and immunohistochemical analysis were used to confirm the healing effect of LA in the porcine skin model. The animals were euthanized after the experiment by injection of pentobarbital sodium. Results: LA, 24% in WO, promotes keratinocytes and fibroblasts proliferation, which were 50.09% and 15.07% respectively higher than control (p < 0.05). The healing rate of the LA group (96.02% ± 2%, 98.58% ± 0.78%) was higher than the saline group (82.11% ± 3.37%, 88.72% ± 1.73%) at week 3 and week 4 (p < 0.05). The epidermal thickness of the LA was 0.16 ± 0.04 mm greater and the expression of the P63 and CK10 proteins was stronger in the LA group than the control (p < 0.05). Conclusions: LA, which is the main components in WO can promote full-thickness burning wounds (FBWs) by stimulating cell proliferation and differentiation.


Subject(s)
Ointments/chemistry , Wound Healing/drug effects , Keratinocytes/drug effects , Linoleic Acid/therapeutic use , Nuts/chemistry , Burns/therapy , Fibroblasts
SELECTION OF CITATIONS
SEARCH DETAIL